资源类型

期刊论文 1316

年份

2024 1

2023 69

2022 87

2021 91

2020 92

2019 104

2018 69

2017 70

2016 49

2015 69

2014 65

2013 59

2012 51

2011 62

2010 56

2009 61

2008 47

2007 57

2006 38

2005 20

展开 ︾

关键词

燃料电池 7

技术预见 5

固体氧化物燃料电池 4

有限元法 4

遗传算法 4

2035 2

DX桩 2

SOFC 2

一阶分析法 2

上限法 2

临床试验 2

优化 2

优化设计 2

催化剂 2

参数估计 2

可靠性 2

增材制造 2

多目标优化 2

干细胞 2

展开 ︾

检索范围:

排序: 展示方式:

Ductile extension of 3-D external circumferential cracks in pipe structures

Wuchao YANG, Xudong QIAN

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 294-303 doi: 10.1007/s11709-011-0115-9

摘要: This study investigates the ductile fracture resistance of 3-D external circumferential cracks in the wall of a steel pipe under remote tension, using a damage-mechanism model originally proposed by Gurson and Tvergaard. The ductile crack extension utilizes an element extinction technique implemented in the computational cell framework. The key parameter for the computational cell method, i.e., the initial porosity ratio , is calibrated using both the fracture resistance and the load-deformation responses obtained from fracture tests of multiple single-edge bend [SE(B)] specimens made of high-strength steel, HY80, which has a yield strength of 630 MPa. The fracture resistance along the 3-D semi-elliptical crack front is computed from the calibrated cell model. Based on the similarity concept in the near-tip stress-strain fields, this study demonstrates that an equivalent 2-D axi-symmetric model provides conservative estimations of the fracture resistance for 3-D circumferential cracks in pipes.

关键词: ductile fracture     computational cell method     G-T model     J-R curve    

Computational simulation methods for fiber reinforced composites

Vladimír KOMPI, Zuzana MURINKOV, Sergey RJASANOW, Richards GRZIBOVSKIS, Qinghua QIN,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 396-401 doi: 10.1007/s11709-010-0079-1

摘要: Trefftz-finite element method (Trefftz-FEM), adaptive cross approximation BEM (ACA BEM) and continuous source function method (CSFM) are used for the simulation of composites reinforced by short fibers (CRSF) with the aim of showing the possibilities of reducing the problem of complicated and important interactions in such composite materials.

关键词: Trefftz-finite element method (Trefftz-FEM)     adaptive cross approximation BEM (ACA BEM)     method of continuous source functions     composite materials     short fibers    

New computational treatment of optical wave propagation in lossywaveguides

Jian-xin ZHU,Guan-jie WANG

《信息与电子工程前沿(英文)》 2015年 第16卷 第8期   页码 646-653 doi: 10.1631/FITEE.1400406

摘要: In this paper, the optical wave propagation in lossy waveguides is described by the Helmholtz equation with the complex refractive-index, and the Chebyshev pseudospectral method is used to discretize the transverse operator of the equation. Meanwhile, an operator marching method, a one-way re-formulation based on the Dirichletto-Neumann (DtN) map, is improved to solve the equation. Numerical examples show that our treatment is more efficient.

关键词: Adjoint operator     Orthogonal     Chebyshev     Pseudospectral method     Dirichlet-to-Neumann map    

Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid

Fernando F. Rivera, Berenice Miranda-Alcántara, Germán Orozco, Carlos Ponce de León, Luis F. Arenas

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 399-409 doi: 10.1007/s11705-020-1934-9

摘要: Description of electrolyte fluid dynamics in the electrode compartments by mathematical models can be a powerful tool in the development of redox flow batteries (RFBs) and other electrochemical reactors. In order to determine their predictive capability, turbulent Reynolds-averaged Navier-Stokes (RANS) and free flow plus porous media (Brinkman) models were applied to compute local fluid velocities taking place in a rectangular channel electrochemical flow cell used as the positive half-cell of a cerium-based RFB for laboratory studies. Two different platinized titanium electrodes were considered, a plate plus a turbulence promoter and an expanded metal mesh. Calculated pressure drop was validated against experimental data obtained with typical cerium electrolytes. It was found that the pressure drop values were better described by the RANS approach, whereas the validity of Brinkman equations was strongly dependent on porosity and permeability values of the porous media.

关键词: CFD simulation     porous media     porous electrode     pressure drop     redox flow battery    

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 456-477 doi: 10.1007/s11709-019-0519-5

摘要:

The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects; 2) upper-bound solutions; 3) accurate solutions and higher convergence rates; 4) insensitivity to mesh distortion; 5) Jacobian-free; 6) volumetric-locking-free; and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on AI-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model on-demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.

关键词: computational method     finite element method     smoothed finite element method     strain smoothing technique     smoothing domain     weakened weak form     solid mechanics     softening effect     upper bound solution    

XFEM schemes for level set based structural optimization

Li LI, Michael Yu WANG, Peng WEI

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 335-356 doi: 10.1007/s11465-012-0351-2

摘要:

In this paper, some elegant extended finite element method (XFEM) schemes for level set method structural optimization are proposed. Firstly, two- dimension (2D) and three-dimension (3D) XFEM schemes with partition integral method are developed and numerical examples are employed to evaluate their accuracy, which indicate that an accurate analysis result can be obtained on the structural boundary. Furthermore, the methods for improving the computational accuracy and efficiency of XFEM are studied, which include the XFEM integral scheme without quadrature sub-cells and higher order element XFEM scheme. Numerical examples show that the XFEM scheme without quadrature sub-cells can yield similar accuracy of structural analysis while prominently reducing the time cost and that higher order XFEM elements can improve the computational accuracy of structural analysis in the boundary elements, but the time cost is increasing. Therefore, the balance of time cost between FE system scale and the order of element needs to be discussed. Finally, the reliability and advantages of the proposed XFEM schemes are illustrated with several 2D and 3D mean compliance minimization examples that are widely used in the recent literature of structural topology optimization. All numerical results demonstrate that the proposed XFEM is a promising structural analysis approach for structural optimization with the level set method.

关键词: structural optimization     level set method     extended finite element method (XFEM)     computational accuracy and efficiency    

Nano thermo-hydrodynamics method for investigating cell membrane fluidity

YANG Yang, LIU Jing

《能源前沿(英文)》 2008年 第2卷 第2期   页码 121-128 doi: 10.1007/s11708-008-0033-2

摘要: As a barrier to compartmentalize cells, membranes form the interface between a cell and its surroundings. The essential function of a membrane is to maintain a relatively stable environment in the cell, exchange substances selectively and transfer energy and information continually from the outside. It is intriguing that above the phase transition temperature, the membrane lipid molecule will have three modes–lateral diffusion, rotational movement and flip-flop activity. These thermodynamic processes are vital to cell existence, growth, division, differentiation and are also responsible for hundreds of thousands of phenomena in life. Previously, species transport across the membrane was interpreted mainly from a phenomenological view using a lumped system model. Therefore, detailed flow processes occurred in the membrane domain and clues related to life mechanism were not sufficiently tackled. Such important issues can be clarified by modeling nano scale thermal hydrodynamics over the gap space of a cell membrane. Previously observed complex membrane behaviors will be shown in this paper and explained by the thermally induced fluidic convections inside the membrane. A correlation between nano scale hydrodynamics, non-equilibrium thermodynamics and cell membrane activities is set up. The disclosed mechanisms are expected to provide a new viewpoint on the interaction between intracellular and extracellular processes through the membrane.

关键词: responsible     phenomenological     phenomena     modes–lateral diffusion     differentiation    

Computational methods for fracture in rock: a review and recent advances

Ali JENABIDEHKORDI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 273-287 doi: 10.1007/s11709-018-0459-5

摘要: We present an overview of the most popular state-of-the-art computational methods available for modelling fracture in rock. The summarized numerical methods can be classified into three categories: Continuum Based Methods, Discrete Crack Approaches, and Block-Based Methods. We will not only provide an extensive review of those methods which can be found elsewhere but particularly address their potential in modelling fracture in rock mechanics and geotechnical engineering. In this context, we will discuss their key applications, assumptions, and limitations. Furthermore, we also address ‘general’ difficulties that may arise for simulating fracture in rock and fractured rock. This review will conclude with some final remarks and future challenges.

关键词: numerical modelling     method development     rock mechanics     fractured rock     rock fracturing    

Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods

Zheng-Dong MA

《机械工程前沿(英文)》 2018年 第13卷 第3期   页码 442-459 doi: 10.1007/s11465-018-0488-8

摘要:

Macro-architectured cellular (MAC) material is defined as a class of engineered materials having configurable cells of relatively large (i.e., visible) size that can be architecturally designed to achieve various desired material properties. Two types of novel MAC materials, negative Poisson’s ratio material and biomimetic tendon reinforced material, were introduced in this study. To estimate the effective material properties for structural analyses and to optimally design such materials, a set of suitable homogenization methods was developed that provided an effective means for the multiscale modeling of MAC materials. First, a strain-based homogenization method was developed using an approach that separated the strain field into a homogenized strain field and a strain variation field in the local cellular domain superposed on the homogenized strain field. The principle of virtual displacements for the relationship between the strain variation field and the homogenized strain field was then used to condense the strain variation field onto the homogenized strain field. The new method was then extended to a stress-based homogenization process based on the principle of virtual forces and further applied to address the discrete systems represented by the beam or frame structures of the aforementioned MAC materials. The characteristic modes and the stress recovery process used to predict the stress distribution inside the cellular domain and thus determine the material strengths and failures at the local level are also discussed.

关键词: architectured material     cellular materials     multi-scale modeling     homogenization method     effective material properties     computational method    

Improved numerical method for time domain dynamic structure-foundation interaction analysis based onscaled boundary finite element method

DU Jianguo, LIN Gao

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 336-342 doi: 10.1007/s11709-008-0054-2

摘要: Based on the reduced set of base function in scaled boundary finite element method (SBFEM), an improved time domain numerical approach for the dynamic structure-foundation interaction analysis was proposed. With reasonable choice of the number of base functions, the degrees of freedom on the structure-foundation interface were reduced and the associated computation for the calculation of convolution integral was greatly reduced. The results of this proposed approach applied to the calculation of a gravity dam and an arch dam. The acceleration frequency response functions were calculated and the influences affected by different reduced set of base functions as well as full set were compared. It was found that a higher degree of reduced set of base functions resulted in a significant increase of computational efficiency but a little bit of loss in accuracy. When the reduced set was decreased by 60%, the efficiency may be increased to up to five times, while the loss of accuracy of peak value of response will be less than 4%. It may be concluded that the proposed approach is suitable for large-scale structure-foundation interaction analysis.

关键词: structure-foundation interface     computational efficiency     different     suitable     numerical approach    

Explicit finite element method for calculation and analysis to the elasto-plastic dynamic response of

LI Liang, DU Xiuli, LI Liyun, ZHAO Chenggang

《结构与土木工程前沿(英文)》 2007年 第1卷 第4期   页码 436-442 doi: 10.1007/s11709-007-0059-2

摘要: In order to describe the elasto-plastic dynamic response of fluid-saturated porous media, the incremental elasto-plastic wave propagation equations of fluid-saturated porous media are developed by the fundamental theory of continuum mechanics and appointing to the characteristic of fluid-saturated porous media. Then, the space discretization of these equations is performed to get their Galerkin formula. At last, the time discretization of this formula is carried out with the integral method which consists of central difference method and Newmark constant average acceleration method to get the explicit time integral formula for solving the wave propagation equations of porous media. On the basis of the integral formula mentioned above, the time-domain explicit finite element method is developed for calculation and analysis of the elasto-plastic dynamic response of fluid-saturated porous media. In this method, the decoupling technique is adopted and it does not need to solve simultaneous linear equations in each time step, so the computational effort and memory requirement can be reduced considerably by using this method.

关键词: discretization     computational     calculation     integral     requirement    

Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis

Ze Sun,Chenglin Liu,Guimin Lu,Xingfu Song,Jianguo Yu

《化学科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 522-531 doi: 10.1007/s11705-015-1539-x

摘要: Electric field is the energy foundation of the electrolysis process and the source of the multiphysical fields in a magnesium electrolysis cell. In this study, a three-dimensional numerical model was developed and used to calculate electric field at the steady state through the finite element analysis. Based on the simulation of the electric field, the operational and structural parameters, such as the current intensity, anode thickness, cathode thickness, and anode-cathode distance (ACD), were investigated to obtain the minimum cell voltage. The optimization is to obtain the minimum resistance voltage which has a significant effect on the energy consumption in the magnesium electrolysis process. The results indicate that the effect of the current intensity on the voltage could be ignored and the effect of the ACD is obvious. Moreover, there is a linear decrease between the voltage and the thicknesses of the anode and cathode; and the anode-cathode working height also has a significant effect on the voltage.

关键词: finite element method     magnesium electrolysis cell     electric field    

An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis

M. H. NGUYEN-THOI,L. Le-ANH,V. Ho-HUU,H. Dang-TRUNG,T. NGUYEN-THOI

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 341-358 doi: 10.1007/s11709-015-0302-1

摘要: A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) was recently proposed and proven to be robust for free vibration analyses of Reissner-Mindlin shell. The method improves significantly the accuracy of the solution due to softening effect of the cell-based strain smoothing technique. In addition, due to using only three-node triangular elements generated automatically, the CS-FEM-DSG3 can be applied flexibly for arbitrary complicated geometric domains. However so far, the CS-FEM-DSG3 has been only developed for analyzing intact structures without possessing internal cracks. The paper hence tries to extend the CS-FEM-DSG3 for free vibration analysis of cracked Reissner-Mindlin shells by integrating the original CS-FEM-DSG3 with discontinuous and crack−tip singular enrichment functions of the extended finite element method (XFEM) to give a so-called extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3). The accuracy and reliability of the novel XCS-FEM-DSG3 for free vibration analysis of cracked Reissner-Mindlin shells are investigated through solving three numerical examples and comparing with commercial software ANSYS.

关键词: cracked Reissner-Mindlin shell     free vibration analysis     cell-based smoothed discrete shear gap method (CS-FEM-DSG3)     extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3)     smoothed finite element methods (SFEM)    

Challenges of high dam construction to computational mechanics

ZHANG Chuhan

《结构与土木工程前沿(英文)》 2007年 第1卷 第1期   页码 12-33 doi: 10.1007/s11709-007-0002-6

摘要: The current situations and growing prospects of China s hydro-power development and high dam construction are reviewed, giving emphasis to key issues for safety evaluation of large dams and hydro-power plants, especially those associated with application of state-of-the-art computational mechanics. These include but are not limited to: stress and stability analysis of dam foundations under external loads; earthquake behavior of dam-foundation-reservoir systems, mechanical properties of mass concrete for dams, high velocity flow and energy dissipation for high dams, scientific and technical problems of hydro-power plants and underground structures, and newly developed types of dam-Roll Com pacted Concrete (RCC) dams and Concrete Face Rock-fill (CFR) dams. Some examples demonstrating successful utilizations of computational mechanics in high dam engineering are given, including seismic nonlinear analysis for arch dam foundations, nonlinear fracture analysis of arch dams under reservoir loads, and failure analysis of arch dam-foundations. To make more use of the computational mechanics in high dam engineering, it is pointed out that much research including different computational methods, numerical models and solution schemes, and verifications through experimental tests and filed measurements is necessary in the future.

关键词: reservoir     engineering     hydro-power development     state-of-the-art computational     earthquake    

Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation

Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 208-219 doi: 10.1007/s11705-020-1945-6

摘要: Utilizing CO in an electro-chemical process and synthesizing value-added chemicals are amongst the few viable and scalable pathways in carbon capture and utilization technologies. CO electro-reduction is also counted as one of the main options entailing less fossil fuel consumption and as a future electrical energy storage strategy. The current study aims at developing a new electrochemical platform to produce low-carbon e-biofuel through multifunctional electrosynthesis and integrated co-valorisation of biomass feedstocks with captured CO . In this approach, CO is reduced at the cathode to produce drop-in fuels (e.g., methanol) while value-added chemicals (e.g., selective oxidation of alcohols, aldehydes, carboxylic acids and amines/amides) are produced at the anode. In this work, a numerical model of a continuous-flow design considering various anodic and cathodic reactions was built to determine the most techno-economically feasible configurations from the aspects of energy efficiency, environment impact and economical values. The reactor design was then optimized via parametric analysis.

关键词: electrosynthesis     e-biofuels     CO2 utilization     computational model    

标题 作者 时间 类型 操作

Ductile extension of 3-D external circumferential cracks in pipe structures

Wuchao YANG, Xudong QIAN

期刊论文

Computational simulation methods for fiber reinforced composites

Vladimír KOMPI, Zuzana MURINKOV, Sergey RJASANOW, Richards GRZIBOVSKIS, Qinghua QIN,

期刊论文

New computational treatment of optical wave propagation in lossywaveguides

Jian-xin ZHU,Guan-jie WANG

期刊论文

Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid

Fernando F. Rivera, Berenice Miranda-Alcántara, Germán Orozco, Carlos Ponce de León, Luis F. Arenas

期刊论文

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

期刊论文

XFEM schemes for level set based structural optimization

Li LI, Michael Yu WANG, Peng WEI

期刊论文

Nano thermo-hydrodynamics method for investigating cell membrane fluidity

YANG Yang, LIU Jing

期刊论文

Computational methods for fracture in rock: a review and recent advances

Ali JENABIDEHKORDI

期刊论文

Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods

Zheng-Dong MA

期刊论文

Improved numerical method for time domain dynamic structure-foundation interaction analysis based onscaled boundary finite element method

DU Jianguo, LIN Gao

期刊论文

Explicit finite element method for calculation and analysis to the elasto-plastic dynamic response of

LI Liang, DU Xiuli, LI Liyun, ZHAO Chenggang

期刊论文

Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis

Ze Sun,Chenglin Liu,Guimin Lu,Xingfu Song,Jianguo Yu

期刊论文

An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis

M. H. NGUYEN-THOI,L. Le-ANH,V. Ho-HUU,H. Dang-TRUNG,T. NGUYEN-THOI

期刊论文

Challenges of high dam construction to computational mechanics

ZHANG Chuhan

期刊论文

Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation

Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan

期刊论文